PROCEEDINGS OF SPIE

Metro and Data Center Optical Networks and Short-Reach Links III

Atul K. Srivastava Madeleine Glick Youichi Akasaka Editors

5–6 February 2020 San Francisco, California, United States

Sponsored by SPIE

Cosponsored by Corning Incorporated (United States) NTT Electronics (Japan)

Published by SPIE

Volume 11308

Proceedings of SPIE 0277-786X, V. 11308

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in Metro and Data Center Optical Networks and Short-Reach Links III, edited by Atul K. Srivastava, Madeleine Glick, Youichi Akasaka, Proceedings of SPIE Vol. 11308 (SPIE, Bellingham, WA, 2020) Seven-digit Article CID Number.

ISSN: 0277-786X ISSN: 1996-756X (electronic)

ISBN: 9781510633797 ISBN: 9781510633803 (electronic)

Published by **SPIE** P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445 SPIE.org Copyright © 2020, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/20/\$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

• The first five digits correspond to the SPIE volume number.

• The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

V	Author

vii Conference Committee

DATACENTER NETWORKS

- 11308 04 High-speed optical wireless links for datacenters (Invited Paper) [11308-3]
- 11308 05 System aspects of the next-generation data-center networks based on 200G per lambda IMDD links (Invited Paper) [11308-4]

TRANSPONDERS AND MODULES FOR OPTICAL NETWORKS

- 11308 06 Single-lambda 100G-PAM4 QSFP28 transceiver for 80-km C-band transmission (Best Technical Paper Award) [11308-5]
- 11308 07 **High-speed optical devices and packaging techniques for data centers (Invited Paper)** [11308-6]
- 11308 08 Latest standardization trend for high-speed optical transceivers with a view of beyond Tera era [11308-7]
- 11308 09 Highly spectrally efficient metro networks that adopt fiber-level granular routing on overlaid line-/ring-shaped virtual topologies [11308-13]

TRANSPONDERS AND MODULES FOR DATACOM

- 11308 0A Simplified optical transceivers for Stokes-vector transmission systems (Invited Paper) [11308-8]
- 11308 0C Enabling low-cost high-volume production compatible terabit transceivers with up to 1.6 Tbps capacity and 100Gbps per lane PAM-4 modulation for intra-data center optical interconnects up to 2km: The TERIPHIC project approach (Invited Paper) [11308-10]

OPTICAL TRANSPORT SYSTEMS

Programmable transmission systems using coherent detection enabling multi-Tb/s interfaces for IT-communications convergence in optical networks (Invited Paper) [11308-11]
Quasi-Nyquist WDM networks using receiver-side quadrature duo-binary/quaternary spectrum shaping [11308-12]

11308 OF	Upcoming applications driving the design of next-generation metro area networks: dealing with 5G backhaul/fronthaul and edge-cloud computing (Invited Paper) [11308-14]
11308 0G	Multi-Tb/s sustainable MAN scenario enabled by VCSEL-based innovative technological solutions (Invited Paper) [11308-15]
	NETWORK DEVICES AND SECURITY
11308 OH	Secure DPSK-based M-ary block-ciphered multicarrier optical communication (Invited Paper) [11308-16]
11308 01	Design considerations for multi-chip module silicon-photonic transceivers (Invited Paper) [11308-17]
11308 OJ	Optical mitigation of DDoS attacks using silicon photonic switches (Invited Paper) [11308-18]
11308 OK	High-speed and large-capacity integrated silicon photonics technologies (Invited Paper) [11308-19]
	PHOTONICS FOR DATACENTER AND METRO NETWORKS
11308 OL	Polarization dependent loss mitigation technologies for digital coherent system (Invited Paper) [11308-20]
11308 0M	Multimode-based short-reach optical communication systems: versatile design framework (Invited Paper) [11308-21]
11308 ON	Optical nonlinearity compensation using artificial neural-network-based digital signal processing (Invited Paper) [11308-22]
11308 00	Multicore fiber technologies toward practical use (Invited Paper) [11308-23]
11308 OP	Automated tuning and channel selection for cascaded micro-ring resonators (Invited Paper) [11308-24]

POSTER SESSION

11308 ORA study on 400ZR and flexible-grid spacing for data-center interconnect transmission
[11308-26]