PROCEEDINGS OF SPIE

Infrared, Millimeter-Wave, and Terahertz Technologies VI

Cunlin Zhang Xi-Cheng Zhang Masahiko Tani Editors

21–22 October 2019 Hangzhou, China

Sponsored by SPIE COS—Chinese Optical Society

Cooperating Organizations

Tsinghua University (China) • Peking University (China) • University of Science and Technology of China (China) • Zhejiang University (China) • Tianjin University (China) • Beijing Institute of Technology (China) • Beijing University of Posts and Telecommunications (China) • Nankai University (China) • Changchun University of Science and Technology (China) • Changchun University of Science and Technology (China) • Capital Normal University (China) • Huazhong University of Science and Technology (China) • Beijing Jiaotong University (China) • China Jiliang University (China) • Shanghai Institute of Optics and Fine Mechanics, CAS (China) • Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China) Institute of Semiconductors, CAS (China) • Institute of Optics and Electronics, CAS (China) • Institute of Physics, CAS (China) • China Instrument and Control Society (China) • Japan Optical Society (Japan) • Korea Optical Society (Korea, Republic of) • Australia Optical Society (Australia) • Singapore Optical Society (Singapore) • European Optical Society

Supporting Organizations

China Association for Science and Technology (CAST) (China)
Department of Information of National Nature Science Foundation, China (NSFC) (China)

Published by SPIE

Volume 11196

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in *Infrared, Millimeter-Wave, and Terahertz Technologies VI*, edited by Cunlin Zhang, Xi-Cheng Zhang, Masahiko Tani, Proceedings of SPIE Vol. 11196 (SPIE, Bellingham, WA, 2019) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510631090

ISBN: 9781510631106 (electronic)

Published by

SPIF

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445 SPIF ora

Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/\$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

vii	Authors
ix	Symposium Committees
хii	Conference Committee
SESSION 1	DEVICES
11196 04	Photo active control of plasmon-induced reflection in complementary terahertz metamaterials [11196-3]
11196 05	Development of multi-beam Fourier phase grating at 660 GHz [11196-4]
11196 06	Classification of terahertz pulsed signals from breast tissues using wavelet packet energy feature exaction and machine learning classifiers [11196-5]
SESSION 2	PHYSICS
11196 08	Comparison of various liquids as sources of terahertz radiation from one-color laser filament
1119609	Investigation of liquid properties on emitting terahertz wave under ultrashort optical excitation [11196-8]
11196 OA	A hybrid-algorithm-based region of interest segmentation in THz imaging [11196-9]
11196 OB	Detection of illegal additives for health products based on terahertz spectroscopy [11196-11]
SESSION 3	SPECTROSCOPY
11196 OD	Dielectric responses of living glial cell monolayer based on terahertz ATR spectroscopy (Invited Paper) [11196-13]
11196 OE	The biosensing of liver cancer cells based on the terahertz plasmonic metamaterials [11196-14]
11196 OF	Graphene-based terahertz modulations enhanced with hollow metallic structures [11196-15]
111960G	Tungble polarization-independent broadband absorber in the terahertz regime [11196-16]

11196 OH	The propagation simulation of terahertz wave in PC materials [11196-17]
1119601	Great localized field enhancement in terahertz antenna composed of hyperbolic metamaterials [11196-18]
SESSION 4	IMAGING
11196 OL	An efficient terahertz metamaterial linear polarization converter [11196-20]
11196 ON	Nested anti-resonant hollow core fiber for terahertz propagation [11196-22]
1119600	A low-cost single-pixel terahertz imaging method using near-field photomodulation and compressed sensing [11196-23]
SESSION 5	GENERATION AND DETECTION
11196 OP	Room-temperature monolithic quantum-cascade laser sources operating from 1.1 to 1.5 THz (Invited Paper) [11196-24]
11196 OS	Characterization of a 0.35 THz aluminum 64-pixel MKID array [11196-27]
11196 OT	Comparison for two deconvolution techniques of terahertz signal [11196-28]
11196 OU	Analysis of RF-noise contribution in THz superconducting SIS mixers [11196-29]
	POSTER SESSION
11196 OX	Biosensor platforms of the polarization-dependent metamaterials for the detection of cancercell concentration [11196-32]
11196 OY	Transmittance of high-density polyethylene from 0.1 THz to 15 THz [11196-33]
11196 OZ	Characteristics of IF bandwidth of NbN superconducting tunneling junction mixers [11196-34]
1119610	Design evaluation of the tilt mirror and groove feature for flat thermal image of the blackbody unit [11196-35]
1119611	Optimizing lens barrel design compensating thermal expansion by athermalization analysis [11196-36]
1119615	Metamaterial and its sensing application in terahertz region [11196-40]
1119616	Reversible composite terahertz modulator based on VO ₂ phase transition [11196-41]

1119617	Highly sensitive detection of glycerol proportion using asymmetric terahertz metamaterial [11196-42]
1119618	Electrical and vibrational properties of hydrogen bonds in glycine-water clusters [11196-43]
1119619	Study on the spectral and polarization properties of split circular terahertz resonators [11196-44]
111961A	Establishment and relevant analysis of plant's spectral reflectivity database in visible and near-infrared bands [11196-45]
111961B	Study on transmission enhancement of air-adsorbed graphene by terahertz spectroscopy [11196-46]
111961C	An effective THz modulator with graphene tuned under low voltage with polyethylene oxide-based electrolytes [11196-47]
111961D	Design of hyperspectral mid-infrared imaging system [11196-48]
111961E	Simulation of terahertz light field imaging based on single camera [11196-49]
111961F	Characterization the electromagnetic property of porous ceramic using THz-TDS [11196-50]
111961G	Research on depth-of-field depth-of-light field microscopy in the terahertz band [11196-51]
111961H	310 GHz communication system based on direct spreading sequence [11196-52]
1119611	Harmonic method for noise reduction in subharmonic mixing terahertz communication system [11196-53]
111961J	Molecular detection of sodium nitrate and sodium nitrite based on THz-TDS system [11196-54]
111961K	Study on light field imaging technology and its prospects in terahertz field [11196-55]
111961M	Electrode of photoconductive antenna in terahertz on chip system [11196-57]
1119610	Terahertz attenuated total reflection imaging of fresh brain tumor [11196-59]
111961Q	Performance analysis of infrared detection system based on near space platform [11196-61]
111961R	Simulation of transmission characteristics of Fabry-Perot filter on silicon substrate [11196-62]
111961T	Terahertz wave transmission and reflection characteristics in plasma [11196-64]

111961V	Terahertz spectral analysis of DNA based molecule cytosine and its methylated structure 5-methylcytosine [11196-66]
111961W	Optimization of infrared Stokes imaging polarimeter for detection of camouflaged target [11196-67]