PROCEEDINGS OF SPIE

Gallium Nitride Materials and Devices XIV

Hiroshi Fujioka Hadis Morkoç Ulrich T. Schwarz Editors

4–7 February 2019 San Francisco, California, United States

Sponsored and Published by SPIE

Volume 10918

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in *Gallium Nitride Materials and Devices XIV*, edited by Hiroshi Fujioka, Hadis Morkoç, Ulrich T. Schwarz, Proceedings of SPIE Vol. 10918 (SPIE, Bellingham, WA, 2019) Sevendigit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510624788

ISBN: 9781510624795 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) Fax +1 360 647 1445

SPIE.org

Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/\$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

VII	Authors Conference Committee
İX	Conference Comminee
	GROWTH II
10918 0A	Enhanced optical and structural properties of MBE-grown AlGaN nanowires on Si substrate by H-ion implantation and UV ozone treatment [10918-9]
	MATERIAL CHARACTERIZATION I
10918 OE	III-nitride vertical resonant cavity light-emitting diodes with hybrid air-gap/AlGaN-dielectric distributed Bragg reflectors [10918-13]
10918 01	Optically pumped room temperature low threshold deep UV lasers grown on native AIN substrates [10918-17]
	MATERIAL CHARACTERIZATION II
10918 0M	Green InGaN/GaN based LEDs: high luminance and blue shift [10918-21]
10918 0O	Investigation of the device degradation for commercial light-emitting diodes (LEDs) using spatially and time-resolved electro- and photoluminescence [10918-23]
10918 0Q	Analysis on light extraction property of AlGaN-based flip-chip ultraviolet light-emitting diodes by the use of self-assembled SiO ₂ microsphere array [10918-25]
	NANOSTRUCTURES
10918 OZ	New physics in GaN resonant tunneling diodes (Invited Paper) [10918-34]
10918 14	Demonstration of uniform and reliable GaN p-i-p-i-n separate-absorption and multiplication ultraviolet avalanche photodiode arrays with large detection area [10918-39]
	ELECTRON DEVICES
10918 16	Vertical power devices enabled by bulk GaN substrates (Invited Paper) [10918-41]

10918 17	Degradation physics of GaN-based lateral and vertical devices (Invited Paper) [10918-42]
10918 19	Simple ohmic contact formation in HEMT structures: application to AlGaN/GaN [10918-44]
10918 1A	Normally-off p-GaN gate InAIN/GaN HEMTs grown on silicon substrates [10918-45]
10918 1B	Electrical and structural characteristics of aged RF GaN HEMTs and irradiated high-power GaN HEMTs with protons and heavy ions [10918-46]
	LASER DIODES
10918 1D	High-efficiency blue and green laser diodes for laser displays (Invited Paper) [10918-48]
10918 1F	Influence of sandwiched GaN/AlGaN/GaN lower quantum barrier on crystallinity and luminescence of an asymmetric GaN-based high-power laser diode [10918-50]
	VCSEL I
10918 1H	Room temperature continuous wave lasing of GaN-based green vertical-cavity surface-emitting lasers (Invited Paper) [10918-52]
	VCSEL II
10918 1J	Recent progress in GaN-based vertical-cavity surface-emitting lasers with lateral optical confinement due to an incorporated curved mirror (Invited Paper) [10918-54]
10918 1L	Influence of Al ion implantation on electrical and optical properties in nitride TJ VCSEL [10918-56]
10918 1M	Development of nanopore-based near ultraviolet vertical-cavity surface emitting lasers [10918-57]
	MICRO LEDs I
10918 10	GaN monolithic integration for lighting and display (Invited Paper) [10918-59]
10918 1Q	Advanced solutions for high-performance GaN MicroLED displays (Invited Paper) [10918-61]

	MICRO LEDs II
10918 1R	Growth of monolithic full-color light-emitting diode and its applications (Invited Paper) [10918-62]
	UV LEDs
10918 1X	Functional integrity and stable high-temperature operation of planarized ultraviolet-A Al $_x$ Ga $_{1-x}$ N/Al $_y$ Ga $_{1-y}$ N multiple-quantum-disk nanowire LEDs with charge-conduction promoting interlayer [10918-68]
	LEDs
10918 22	Suppression of indium clustering and quantum confined stark effect of InGaN LED on silicon (111) [10918-73]