PROCEEDINGS OF SPIE

Optical Components and Materials XVI

Shibin Jiang Michel J. F. Digonnet Editors

4–6 February 2019 San Francisco, California, United States

Sponsored and Published by SPIE

Volume 10914

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in *Optical Components and Materials XVI*, edited by Shibin Jiang, Michel J. F. Digonnet, Proceedings of SPIE Vol. 10914 (SPIE, Bellingham, WA, 2019) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510624702

ISBN: 9781510624719 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445 SPIF org

Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/\$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

∨ii xi	Authors Conference Committee
	RARE-EARTH DOPED MATERIALS I
10914 03	1.5µm persistent luminescence of Er³+ in Gd₃Al₅-xGaxO₁₂ (GAGG) garnets via persistent energy transfer (Invited Paper) [10914-2]
10914 05	High-power fiber laser materials: influence of fabrication methods and codopants on optical properties $[10914-4]$
10914 06	405-nm pumped Ce ³⁺ -doped silica fiber for broadband fluorescence from cyan to red [10914-5]
	METAMATERIALS
10914 09	Nanoimprinted nanocomposite membrane-type metamaterials [10914-8]
10914 0A	Arsenic selenide dielectric metasurfaces [10914-9]
	SILICON PHOTONICS
10914 OB	Si photonics using micron-size waveguides (Invited Paper) [10914-10]
	SENSORS
10914 OF	Substrate requirements to enable durability and accuracy in structured-light-based 3D sensing [10914-14]
	GRATINGS
10914 OJ	Low-loss and robust DWDM Echelle grating (de-)multiplexers in SOI technology [10914-18]
10914 OK	Bloch surface wave excitation using a maximum length sequence grating structure [10914-19]

appca	ons [10914-20]
NANOMA	ATERIALS
10914 OR Analysis (10914-26	of upconversion nanoparticles as an active medium for upconversion light sources
10914 0S Phase-de [10914-27	ependent emission of KLaF4:Nd³+ nanocrystals in oxyfluoride glass-ceramics
	metry and host sensitization-dependence of Eu ³⁺ real-time luminescence in tin dioxide ticles (Invited Paper) [10914-28]
OPTICAL	GLASSES, FIBERS, AND WAVEGUIDES
10914 0V Optical g	plass: refractive index homogeneity from small to large parts - an overview [10914-30]
	on of high optical quality Ge-As-Se glasses for the development of low-loss actured optical fibers [10914-32]
	proach for high-performance optical fibers: multiple-doped silica powders with enhanced processes [10914-33]
	properties and long-term stability of unclad single crystal sapphire fiber in harsh ments [10914-34]
10914 10 Flexible v	waveguides with amorphous photonic materials [10914-35]
RARE-EAI	RTH DOPED MATERIALS II
10914 11 SiO₂-SnO	2 transparent glass-ceramics activated by rare earth ions (Invited Paper) [10914-36]
10914 12 Small sha	ort-wavelength optical isolator using Tb ³⁺ -rich magneto-optical glass [10914-37]
DETECTO	RS
10914 15 Linearity [10914-40	characterization of high performance SWIR photodetectors from various materials
	es on photoconductive InAs/GaSb type-II superlattice long-wavelength infrared s for high operating temperature [10914-41]

10914 17	Metal semiconductor metal photodiodes based on all-epitaxial Ge-on-insulator-on- Si(111), grown by molecular beam epitaxy [10914-42]
10914 18	Ultrafast response vertical phototransistors based on hybrid perovskite [10914-43]
10914 19	Solution-possessed vertical photodetectors based on composition-dependent cesium lead halide (CsPbX ₃ , X = Cl, Br, and l) perovskite quantum dots [10914-44]
10914 1A	Metal-semiconductor-metal photodetectors on a GeSn-on-insulator platform [10914-45]
	DEVELOPMENT OF OPTICAL COMPONENTS
	DEVELOTMENT OF OFFICAL COMPONENTS
10914 1B	Super broadband achromatic lenses extending from the visible to the mid-infrared [10914-46]
10914 1E	Automated sprue removal from injection moulded micro-optics with ultrasonic cutting [10914-50]
10914 1F	Optics with diamond-like-carbon overcoat (DOC) provide improved optical performance over traditional DLC films and better cleanability than standard PVD coatings [10914-51]
	POSTER SESSION
10914 1H	Compositional dependence of the emission color of sodium borate glasses embedded with inorganic ions under diode laser excitation [10914-53]
10914 11	First-principle calculations of Debye temperature of optoelectronic LiGaS $_2$ and LiGaS $_2$ semiconductors under different pressures $[10914-54]$
10914 1J	Numerical investigation on local confinement of infrared light in chalcogenide transversely disordered optical fibers [10914-57]
10914 1K	Diamond gratings used for high-power laser system [10914-58]
10914 1M	Structure optimization of KTa _{1-x} Nb _x O ₃ varifocal lens [10914-60]
10914 1N	Monitoring the purification of tobacco smoke in air assisted by ZnO nanowires and using MEMS-FTIR spectrometer for online continuous analysis of volatile organic compounds (VOCs) [10914-61]
10914 10	Tailoring bandgap transmission spectra of new neodymium-doped tellurite all-solid photonic bandgap fibers with double cladding layers [10914-62]
10914 1R	Single-mode large-mode-area Er-Yb fiber [10914-65]
10914 1S	3D printing optical devices based on silicone optical technology (SOT) and its application on analytical chemistry [10914-66]

10914 1U	Optical properties of partially hydrogenated graphene using first-principle calculations [10914-70]
10914 1V	Coating geometry measurement of specialty fiber with dark-field illumination technique [10914-71]
10914 1W	Diffractive optical elements investigation in the phase domain [10914-72]
10914 1X	Novel optical gas sensor based on photonic crystal fiber [10914-73]
10914 1Z	Design of long-range hybrid plasmonic waveguides [10914-77]
10914 20	Multi-wavelength erbium-doped fiber ring lasers based on an optical fiber tip interferomete [10914-78]
10914 23	The sealed, the athermaled, and the rugged: the wild west of modified opto-mechanical design [10914-82]
10914 24	High-efficiency Ge-on-Si SPADs for short-wave infrared [10914-84]
10914 25	Temperature cross-sensitivity compensation in liquid level sensor using Mach-Zehnder interferometers [10914-56]